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Random initial condition in small Barabasi-Albert networks and deviations from
the scale-free behavior

Paulo R. Guimaraes, Jr’> Marcus A. M. de AguiaﬁJordi Bascompté,Pedro Jordandand Sérgio Furtado dos Réis
Ynstituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6109, 13083-970 Campinas, SP, Brazil
?Instituto de Fisica “Gleb Wataghin,” Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6165,
13083-970 Campinas, SP, Brazil
3Integrative Ecology Group, Estacién Bioldgica de Dofiana, CSIC, Apdo. 1056, E-41080 Sevilla, Spain
4Departamento de Parasitologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6109, 13083-970,
Campinas, SP, Brazil
(Received 3 November 2004; published 18 March 2005

Barabasi-Albert networks are constructed by adding nodes via preferential attachment to an initial core of
nodes. We study the topology of small scale-free networks as a function of the size and average connectivity
of their initial random core. We show that these two parameters may strongly affect the tail of the degree
distribution, by consistently leading to broad-scale or single-scale networks. In particular, we argue that the
size of the initial network core and its density of connections may be the main responsible for the exponential
truncation of the power-law behavior observed in some small scale-free networks.
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I. INTRODUCTION tion. To understand why this is so we recall that the BA
network is constructed from a small number of nodes which
Complex networks describe a large number of socialwe call the “initial core.” Then, at each step a new node is
physical, and biological systeni&—9]. The very basic orga- added and connected to the already existing ones following
nizing principles of complex networks are encoded, in soméhe preferential attachment rufél]. Although the original
level, in network topology1,3,9,10. For example, their de- model does not say anything about connections between the
gree distribution, which is the cumulative probability distri- initial nodes, later work has assumed that the initial core is
bution of the number of edges per node, captures in quantfotally connected5,14], totally disconnected15], or ran-
tative terms some rules that govern the connection of nodedomly connected16]. In this paper we demonstrate that, for
in growing networks[1,5,11. The Barabasi-AlbertBA) small networks_, a randomly connected |n_|t|al core in BA
model for growing networks proposes that the two main or1€tWOrks consistently generates a truncation of the degree
ganizing principles acting during the buildup of complex net_d|str|but|on and that the truncation depends on the relative

work are growth and “preferential attachment.” Under thisﬁliéil)? Lézlﬁeg?gg ?;?glenmﬁ:afzgeréslw goerﬁg\r/aetre, vaeegrsegomsmsh-
mechanism there is a nonu_nlf_orm probability with which Btions that markedly deviate from the power-law regime. This
new node connects to an existing node of the network, whic

) th th ber of i  that indicates that the tail of the degree distribution might contain
mrc]:reases V‘é' | € num erg Connﬁ? 'O.ES 0 ﬁ r%dd@ information about the genesis of the network. We note that
The BA model generates a degree distribution that decays 4§e characterization of small networks has been pointed as

a power law, implying that the system does not have a pargne of the leading questions in network reseditH. This
ticular scale (scale-free networls[11]. Although several \ork aims at contributing in this direction.

physical and biological systems are indeed scale free

[3,11,19, there are several examples of complex networks, 1 10 k 100
such as the small mutualistic networks of interactions among 1 B D
plants and animalg/], in which an exponential truncation of 0.1 - e,

the power-law behavior predominates for large degf&és. P(k) Kini o0,

These networks are called broad-scale networks and are 0.01 ~ R

more homogeneous than scale-free netwdfkg. 1). This 0.001 1
observed truncation in power-law behavior can be explained

by the small size of these network$0,13 or by mecha- 0.0001 7
nisms such as the addition of links limited by aging or con- 0.00001 -
nection cost$1], forbidden links[7], and information filter-

ing [1,5]. These mechanisms suggest that, in broad-scale
networks, preferential attachment is constrained by node giG. 1. jilustration of the exponential truncation of the power-

characteristics operating during the network evolution. law behavior of degree distributions. Open circles are recorded val-

However, size effects and growth constraints might not bges forP(k) for a hypothetical degree distribution. Solid circles are
the sole responsibility for the exponential tail of the degreeyalues of P(k) predicted by a power-law distribution, computed
distribution. In this paper we argue that, for relatively smallusing the firstk,; values ofk. k, indicates the lowest value where
networks, the initial set of nodes over which the networkthe “observed’P(k) departs from the predicted power-law behavior.
evolves has strong effects on the tail of the degree distribuk,,.,is maximum recorded degree.

kmax

0.000001
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Il. BA MODEL WITH A RANDOM INITIAL CORE 304

The network’s random initial core is defined as follows: at (a)
time t=0, one createsn, nodes and connects each pair of 204
nodes with constant probability. Thus, this initial core of
nodes is an Erdos-RenyER) random graph3]. Then, at k
each time step, a new node with<m, edges is added to the X 104 \k
network. To incorporate preferential attachment, we assume
that the probabilitylT that a new node will be connected to
nodei depends on the degrdeof that node, so that

K 0 20 40 60
M(k) =< (1) My
2J ki 0.5

To test numerically the effect of the size of the ER initial (b)
core on the degree distribution, we simulate the evolution of 0.4
different networks with fixed final siz8=100 nodes andh
=5 links, but with different initial connection probabilitigs 0.3-

(p=0.1 andp=0.8) and different sizes of ER initial cores. To t
reduce fluctuations in the degree distribution related to the 0.2
small network sizd1,2], we calculated the cumulative de- ’
gree distributionP(k).

Preliminary simulations suggest that, even for small val- 0'10 20 40 60
ues ofmy, the cumulative degree distributid?(k) shows an mo
exponential truncation for large values lof To reduce the
effects of this truncation on the estimate of the exponent of 50

; e (c)
power-law behavior for the degree distribution, we only used 40.
the first five recorded values &fto compute the power law
exponent ofP(k), as illustrated in Fig. 1. K 30

For the less connected ER cdi@=0.1), we used the fol- max *
lowing measures to characterize the effectagbn theP(k) 204 4
(see Fig. L (1) the cutoff degred,, in which the observed 10,

P(k) departs from the predicted power-law behavior, de-
creasing exponentially(2) the maximum recorded degree ) , , , , . X
Kmaw (3) the proportion of nodes witlk;>k,; and (4) the 0 10 20 30 m4° 50 60
strength of truncatiom, which describes the rate of decrease 0
of P(k) with k, following e for k> k,. For the highly con- 0.4-
nected ER corép=0.8) we only show how the degree dis- (d)
tribution departs from the predicted power-law behavior. @ 0.3
2
IIl. RESULTS 5 0.2
o

Our results show that the scale-free nature of small BA £
networks is strongly affected by the size of ER initial core. & 0.11
For p=0.1, the strength of the exponential truncation of the o
power-law behavior of the degree distribution is enhanced by 0-00

ER initial core size, as shown in Fig. 2. Figuré@Rshows 1o 20 30 m40 0 €0

that increasing the ER initial core results in a linear decrease 0

in k.. Moreover, the exponerttincreases linearly with the FIG. 2. Effects of the ER initial core siz@, for p=0.1 on(a)

size of the ER initial core, fok=k,, as shown in Fig. @).  the cutoff degreetb) the strength of exponential truncatidn(see

The earlier truncation of the power-law behavior and theext for further details (c) the maximum recorded degrég,a,; and

increase ot with my imply that the homogeneity of the BA  (d) the proportion of nodes of the network wiki> k,. The network

networks (i.e., similarity of the degre& between different size has been fixed to 100 nodes.

nodes increases with ER core size. In fact, the increase in

ER core size generates a linear reduction in the maximumf the network, behaves as a power law kp< k, and as an

recorded degree, Fig(®, and a logarithmic increase in the exponential fork;>k,. Thus, these networks are broad-scale

proportion of nodes in whick; >k, Fig. 2d). networks. For larger initial core@ny,=30), the degree distri-
The degree distribution in BA network with less- butionP(k) departs from the expected by the power law even

connected ER initial cores, including 15%-30% of all nodesearlier (k,< 10). In fact, these networks cannot be character-
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FIG. 3. Different classes of complex networks are generated by 301 }
varying the size of the ER initial coney for p=0.1. The network o
size has been fixed to 100 nodés. scale-free networkémy=15), & 204 !
(b) broad-scale networkémy=25) and (c) single-scale networks !
(m0:50) 104 {
P’ i
ized as scale-free or broad-scale networks, being essentially 0 A . ' ;
exponential or single-scale networkl. Therefore, by sim- (d) 0 0 n?o 60 80
ply changing the ER core size we are able to reproduce the
main classes of complex networks], as shown in Fig. 3. FIG. 4. Effects of the size of the ER initial comg on the

Figure 4 displays the degree distribution foxr0.8, show-  degree distribution for highly connected corgs=0.8). The net-
ing that it markedly departs from the expected by power-lawwork size has been fixed to 100 nod&.mg=10, (b) mp=20, and
behavior. A gap in the range &fvalues appears and linearly (¢) Mo=30. Paneld) shows that the gap indicated in pafts and
increases with ER core size. These networks can therefore @ increases linearly witin, (see text for further details
divided into two subnetworkg1) before the gap, a group of
nodes that attached preferentially to nodes in the ER coreRrevious works suggest that this truncation may be a result
generating a power-law degree distribution, @Rdafter the  of constraints on addition of links. Some different classes of
gap, a highly connected group of nodes, the ER core, isuch constraints have been proposed, such as information

which the degree distribution is exponential. filtering [5], aging, or connection cosfd]. In ecology, the
truncation of power-law behavior was observed in food webs
IV. SUMMARY AND DISCUSSION [19] and in coevolutionary bipartite networks of plant-animal

interactiond 7]. Jordancet al. [7] suggested that these trun-
Complex networks, both biotic and abiotic, often showcations are generated by biological constraints that limit the
exponential truncation in scale-invariant topolof#,5,7.  possible links formed when species add up to the net, a phe-
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nomenon called forbidden interactions. Our results enlargaodes(e.g., species in food web®ccurs over long time

the catalog of mechanisms that could give rise to broad-scalgeriods and it becomes impossible to measure the attachment
networks, by adding the ER initial core as a new candidate. Iprobability. As a consequence, the development of new to-
is important to realize, however, that this new mechanisnpological measures is central to allow an adequate distinction

implies in a qualitatively new scenario. Assuming that therepetween the effects of constraints and those of the ER initial
is a randomly connected initial core of nodes before prefercondition on real networks.
ential attachment starts to act in the network, there is no need Fina|ly we notice that the effects of the ER core on net-

to resort to additional constraints operating during network,,qrk topology will vary depending on how densely con-
evolution; the truncation of power-law behavior is solely, or hactaq jt is. While a less-connected ER core generates a size-

largely, a consequence of the_syspem’s initial_condition. Wedependent exponential truncation of the degree distribution,
expect th_at ER core_hypoth_eSIS will be es_peC|aIIy useful forhighly connected cores will affect differently the degree dis-
systems in which it is possible to recognize the nodes thatt

participated at the birth of the network from the nodes thatrlbut|0n: as the ER core size increases the network will be

P - L ; more clearly structured in two sets of nodes. In the first set of
appeared after a certain time peri@dg., species invading a ) o
food web or those occurring along a seasonal sequence nodes, the ER core, th) is large and the degree distribu-

The hypothesis of the ER initial core can be used to exlion foI_Iows an exponenFiaI decay. In t_he second set, the
plain the buildup of all three main classes of netwoiky ~ nodes in yvhph preferential attachment is opgrating, t_he de-
As the size of the initial core is negatively related with thedree distribution follows a power law. The distance in the
value of the cutoff in which the degree distribution departsdegree between the two sets, measured by the gapat-
from the predicted by the power-law behavior, it is possibleU€S, increases linearly vv_|th ER core size. Rec_ently, Mel_|én
to generate networks that are essentially scale(@emll ER ~ and Bascompt¢20] described food webs in which there is
cores, broad-scalgintermediate ER cor¢sand essentially One or more cohesive, central_ ;gbngts with the remaining
single-scale(large ER cores The similarity of the pattern nodes _connected to them. The '|n|t|e.1l highly dense ER core is
generated by two distinct, highly different mechanisms—a Possible mechanism to explain this pattern, by generating a
namely, initial conditions and growth constraints—implies central, densely connected core of nodes.
that alte_zrnatlve measures are necessary _bef(_)re arguing that ACKNOWLEDGMENTS
constraints are limiting the network evolution in physical or
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